all report title image

Искусственный интеллект на розничном рынке РАЗМЕР И РАСПРОСТРАНЕНИЕ АНАЛИЗ - ТЕНДЕНЦИИ РОСТА И ПРОГНОЗЫ (2024-2031)

Искусственный интеллект на розничном рынке, по технологиям (машинное обучение, обработка естественного языка, компьютерное зрение и автоматизация роботизированных процессов), по приложениям (персонализированные рекомендации, управление запасами, чат-боты обслуживания клиентов, обнаружение мошенничества и оптимизация цен), по конечному пользователю (электронная коммерция, магазины кирпича и кукурузы и оптовые торговцы), по географии (Северная Америка, Латинская Америка, Азиатско-Тихоокеанский регион, Европа, Ближний Восток и Африка)

Искусственный интеллект на розничном рынке Размер и тенденции

Глобальный искусственный интеллект на розничном рынке оценивается как USD 10,48 Bn в 2024 году Ожидается, что он достигнет USD 73,02 Bn к 2031 году, демонстрируя совокупный годовой темп роста (CAGR) 32% с 2024 по 2031 год.

Artificial Intelligence in Retail Market Key Factor

Чтобы узнать больше об этом отчете, запросить образец копии

Искусственный интеллект помогает розничным торговцам улучшать операции в ключевых областях, таких как мерчандайзинг и планирование цепочки поставок. Техника как машинное обучение глубокое обучение позволяет персонализировать рекомендации по продукту и прогнозную аналитику.

Ритейлеры внедряют решения на базе ИИ, такие как компьютерное зрение. чат-ботыи прогнозной аналитики для повышения качества обслуживания клиентов. Технологии искусственного интеллекта позволяют ритейлерам анализировать модели покупок и более точно прогнозировать спрос. Они также помогают снизить затраты на инвентаризацию и повысить эффективность цепочки поставок. Растущий спрос клиентов на персонализированный опыт еще больше побуждает ритейлеров внедрять ИИ в своих операциях.

Управление запасами и оптимизация цепочки поставок

Одним из ключевых факторов внедрения искусственного интеллекта в розничной торговле является потенциал, который он демонстрирует для оптимизации управления запасами и процессов цепочки поставок. Благодаря ИИ розничные торговцы теперь могут анализировать прошлые модели данных о продажах и использовать прогнозную аналитику для более точного прогнозирования тенденций потребительского спроса и поведения покупателей. Это помогает им планировать уровни запасов в соответствии с ожидаемыми продажами и избегать ситуаций нехватки запасов, а также избыточного запаса. При точном прогнозировании спроса ритейлеры экономят огромные расходы, связанные с хранением избыточных запасов, утилизацией непроданных предметов и упущенными возможностями продаж из-за запасов.

Приложения ИИ, такие как компьютерное зрение и алгоритмы машинного обучения, также позволяют розничным торговцам оптимизировать операции цепочки поставок от поиска до распределения. Такие инструменты, как отслеживание запасов с использованием распознавания изображений и прогнозной аналитики для пополнения, автоматически идентифицируют низкие запасы на полках и пополняют их до истечения срока службы. Это повышает доступность на полке и повышает удовлетворенность клиентов без необходимости ручной проверки. Аналогичным образом, прогнозы спроса в сочетании с оптимизацией транспортных маршрутов значительно снижают логистические затраты для ритейлеров. Системы теперь могут рассчитывать наиболее эффективные маршруты путем консолидации поставок и максимального использования грузоподъемности.

Концентрация рынка и конкурентная среда

Artificial Intelligence in Retail Market Concentration By Players

Получите действенные стратегии, чтобы победить конкурентов : Получите мгновенный доступ к отчету

Обнаружение мошенничества и безопасность

По мере распространения онлайн-покупок проблемы мошенничества с платежами и кражи личных данных также возросли в геометрической прогрессии. Традиционные, основанные на правилах и ручные методы обнаружения мошенничества больше не эффективны против развивающейся тактики изощренных мошенников. Это ключевая проблема для розничной торговли, где даже одна мошенническая сделка может подорвать доверие клиентов и прибыль. Передовые решения ИИ, использующие такие методы, как машинное обучение, глубокое обучение и нейронные сети, становятся мощным оружием против мошенничества с платежами. Системы могут анализировать огромный объем данных транзакций, обнаруживать сложные шаблоны и обнаруживать даже тонкие аномалии, которые могут упустить аналитики.

Алгоритмы машинного обучения могут учитывать широкий спектр атрибутов клиента, а также параметры устройства для сравнения транзакции с известными профилями риска. Это помогает определить, является ли онлайн-запрос на покупку, возврат или обмен законным или потенциально мошенническим в режиме реального времени. Инструменты ИИ также способны непрерывно учиться на новых законных и мошеннических данных, чтобы повысить точность обнаружения с течением времени. Интегрированный с соответствующими мерами безопасности, ИИ значительно укрепляет передовую защиту для розничных торговцев и платежных шлюзов от финансовых краж и кражи личных данных в цифровую эпоху. Это защищает бизнес, а также повышает безопасность покупок для клиентов.

Ключевые выводы аналитика:

К основным факторам относится увеличение спроса на персонализированный опыт работы с клиентами и рост цифровых каналов розничной торговли. ИИ помогает розничным торговцам получить представление о предпочтениях клиентов, предлагая персонализированные рекомендации и целевые рекламные акции. Это повышает лояльность клиентов и ценность жизни. В настоящее время Северная Америка доминирует на розничном рынке искусственного интеллекта благодаря внедрению высоких технологий. Тем не менее, в Азиатско-Тихоокеанском регионе ожидается самый быстрый рост, а Индия и Китай станут прибыльными рынками.

В то время как ИИ дает возможность лучше понимать клиентов и автоматизировать задачи, ритейлеры сталкиваются с проблемами, связанными с конфиденциальностью данных и потенциальной потерей рабочих мест. Обеспокоенность клиентов безопасностью и конфиденциальностью данных может сдерживать внедрение технологий на основе ИИ. Ритейлеры должны обеспечить ответственное и прозрачное использование данных клиентов. Интеграция ИИ также требует значительных инвестиций и опыта. Нехватка квалифицированных специалистов для разработки, развертывания и обслуживания передовых систем ИИ создает препятствие. Кроме того, автоматизация повторяющихся рабочих мест с помощью ИИ может снизить потребность в определенных рабочих местах на складах и в магазинах.

Однако ожидается, что ИИ также создаст новые типы рабочих мест, требующих передовых технических и мягких навыков. Преодолев ограничения на конфиденциальность данных, инвестиции и нехватку навыков, ритейлеры могут раскрыть истинный потенциал ИИ для цифровизации операций, улучшения обслуживания клиентов и увеличения доходов.

Проблемы рынка: отсутствие стандартизации и взаимодействия

Одной из основных проблем, с которыми в настоящее время сталкивается глобальный искусственный интеллект на розничном рынке, является отсутствие стандартизации и функциональной совместимости. Существует несколько платформ ИИ, таких как Microsoft Azure AI, Amazon SageMaker, IBM Watson и т. д., и решения, доступные на рынке различными поставщиками, однако они часто используют различные алгоритмы, стандарты, интеграции, форматы данных и API, что затрудняет для ритейлеров беспрепятственное принятие и интеграцию нескольких решений ИИ вместе. Розничные торговцы сталкиваются с серьезными проблемами при изучении различных поставщиков и решений ИИ из-за отсутствия общих стандартов и точек интеграции. Это еще больше ограничивает масштабы внедрения приложений на основе ИИ и интеграции с другими ИТ-системами в розничной экосистеме. Для полного раскрытия потенциала рынка крайне необходима разработка универсальных стандартов интеграции данных и совместимости платформ. Поставщики должны работать вместе, чтобы установить общие протоколы, форматы данных и интерфейсы, которые позволяют решениям безопасно общаться и работать в тандеме друг с другом. Принятие стандартизированных API-интерфейсов позволит шире применять ИИ, упрощая процесс интеграции для ритейлеров.

Интеграция с Интернетом вещей (IoT) и Big Data

Одна из основных возможностей для глобального искусственного интеллекта на розничном рынке заключается в более глубокой интеграции ИИ с устройствами Интернета вещей (IoT) и инструментами анализа больших данных. Розничные торговцы все чаще используют датчики IoT для сбора информации о клиентах в режиме реального времени и оперативной информации из физических мест хранения. ИИ имеет возможность анализировать огромные объемы данных из этих развертываний IoT и транзакций с клиентами для создания ценных шаблонов. Объединяя ИИ с потоками данных IoT и большими данными, ритейлеры могут получить беспрецедентную видимость поведения потребителей, предсказать тенденции спроса, оптимизировать инвентарь, рекомендовать персонализированные предложения и улучшить общий опыт покупок. ИИ в сочетании с IoT также позволяет создавать новые области, такие как предиктивное техническое обслуживание оборудования магазина, передовые операции на базе компьютерного зрения и управление складом на основе дронов. Слияние этих технологий станет ключевым драйвером инноваций и роста розничного рынка ИИ в ближайшие годы.

Artificial Intelligence in Retail Market By Technology

Откройте для себя сегменты с высоким доходом и проложите к ним путь : Получите мгновенный доступ к отчету

Insights By Technology - Сегмент машинного обучения доминирует благодаря росту персонализированного опыта клиентов

По оценкам, в 2024 году сегмент машинного обучения будет занимать 48,7% рынка благодаря своей способности анализировать большие объемы данных клиентов. Алгоритмы машинного обучения могут сканировать шаблоны покупок, историю просмотров, обзоры продуктов и многое другое, чтобы получить глубокое понимание клиентов. С помощью этих идей машинное обучение дает персонализированные рекомендации и опыт продукта. Он понимает предпочтения клиентов, приоритеты и то, что они будут покупать дальше. Этот уровень персонализированного взаимодействия изменил опыт розничной торговли. Клиенты получают индивидуальные предложения для товаров, которые они действительно хотят, а не общие рекламные акции. Они чувствуют себя известными и ценимыми брендом. Машинное обучение также развивает понимание клиентов с течением времени, обеспечивая еще более индивидуальный опыт в будущих посещениях. Это постоянное улучшение поддерживает вовлеченность и лояльность клиентов к розничным торговцам, используя рекомендации машинного обучения.

Insights by Application - Сегмент персонализированных рекомендаций, ведущий рынок за счет повышения видимости и управления запасами

С точки зрения применения, сегмент персонализированных рекомендаций, по оценкам, займет 31,5% рынка в 2024 году. Тем не менее, управление запасами быстро растет из-за его важности. Обработка естественного языка (NLP) позволяет ритейлерам понять спецификации продукта, атрибуты и отношения. Эта информация обеспечивает критическую видимость запасов в сочетании с данными о продажах. NLP распознает, когда запасы находятся на низком уровне, и автоматически заказывает больше через интеграцию с системами цепочки поставок. Он определяет медленно движущиеся предметы и рекомендует корректировку цен или альтернативные варианты покупки. Из запасов предметы могут парализовать опыт клиентов и потерять продажи. NLP гарантирует, что розничные торговцы всегда имеют правильные продукты в нужных местах для удовлетворения потребностей клиентов. Технология оптимизирует пополнение, сокращает отходы и позволяет розничным торговцам реагировать на изменения в поведении потребителей.

Insights by End User - рост сегмента электронной коммерции, обусловленный внедрением цифровой трансформации

По оценкам, в 2024 году сегмент электронной коммерции будет владеть 57,8% акций благодаря своей полностью цифровой бизнес-модели. Тем не менее, обычные магазины все чаще используют ИИ, чтобы выжить в эту новую эпоху. Компьютерное зрение, установленное в физических магазинах, может обнаруживать уровни запасов, выполнять проверки соответствия цен в режиме реального времени и планограммы, чтобы полки были полностью заполнены правильно оцененными предметами. Он также предоставляет своевременные оповещения о разливах, низких уровнях и неуместных продуктах. Компьютерное зрение дает розничным торговцам тот же уровень видимости, что и гигантам электронной коммерции с помощью машинного обучения и НЛП. Роботизированная автоматизация процессов (RPA) выполняет повторяющиеся административные задачи для снижения затрат. Решения ИИ позволяют розничным торговцам с физическими следами оптимизировать операции, улучшить опыт в магазине и эффективно конкурировать со своими онлайн-конкурентами. Принятие новых технологий стало критически важным для многоканальных ритейлеров для привлечения клиентов как онлайн, так и офлайн.

Например, в январе 2024 года Google Cloud, ведущий поставщик услуг облачных вычислений, запустил несколько новых технологий на базе искусственного интеллекта, чтобы помочь розничным торговцам персонализировать опыт онлайн-покупок, модернизировать операции и трансформировать развертывание технологий в магазине. В рамках этих инноваций Google Cloud расширила свою флагманскую технологию поиска для ритейлеров с большими возможностями языковой модели, позволяя покупателям легче находить и открывать продукты. Эти новые предложения направлены на предоставление розничным торговцам практических и мощных инструментов для стимулирования роста и развития клиентского опыта во все более конкурентном ландшафте.

Региональные идеи

Artificial Intelligence in Retail Market Regional Insights

Чтобы узнать больше об этом отчете, запросить образец копии

Северная Америка зарекомендовала себя как доминирующий регион на мировом рынке искусственного интеллекта с долей 38,9% в 2024 году. Это может быть связано с крупными инвестициями крупных технологических компаний, таких как Microsoft, IBM, Nvidia, C3.ai и т. Д. Розничные компании, базирующиеся в США и Канаде, интегрируют технологии на основе ИИ в свою деятельность. Кроме того, наличие нескольких стартап-инкубаторов и ускорителей искусственного интеллекта в регионе способствовало инновациям.

Кроме того, ритейлеры в Северной Америке являются одними из первых пользователей ИИ во всем мире. Широко используются приложения вокруг прогнозной аналитики, прогнозирования спроса, обслуживания клиентов и динамического ценообразования. Продвижение внедрения технологий через правительственные инициативы также способствовало развитию искусственного интеллекта на розничном рынке в регионе. Высокий уровень располагаемого дохода предоставляет розничным торговцам широкие возможности для экспериментов с персонализированным и индивидуальным опытом покупок на основе ИИ. Это значительно повысило спрос.

Азиатско-Тихоокеанский регион стал самым быстрорастущим рынком искусственного интеллекта в розничной торговле. Быстрая цифровизация розничного сектора и растущее проникновение интернета и смартфонов стимулируют рост регионов. В таких странах, как Китай, Индия и Япония, находится огромная потребительская база, которая очень восприимчива к инновационным технологиям с поддержкой ИИ.

Согласно анализу SAP SE с 2020 года, Китай обеспечил 23,4% инвестиций в ИИ в своей торговле и розничной торговле. SAP SE, мировой лидер в области корпоративного прикладного программного обеспечения, предлагает инновационные решения, которые помогают предприятиям трансформировать свою деятельность и эффективно использовать технологии.

Электронная коммерция процветает в регионе, что побудило ритейлеров развернуть ИИ для таких приложений, как рекомендации по продуктам, автоматизация процессов и оптимизация цепочки поставок. Отечественные игроки активно сосредотачиваются на развитии собственных возможностей ИИ, чтобы получить конкурентное преимущество в эту цифровую эпоху.

Область рыночного отчета

Искусственный интеллект в отчете о розничном рынке

Отчетное покрытиеПодробности
Базовый год:2023 годРазмер рынка в 2024 году:US$ 10,48 млрд.
Исторические данные для:2019-2023 годыПрогнозный период:2024-2031 гг.
Прогнозный период 2024-2031 гг.:32%2031 Прогноз ценности:$ 73,02 млрд.
География охватывает:
  • Северная Америка: США и Канада
  • Латинская Америка: Бразилия, Аргентина, Мексика и остальная часть Латинской Америки
  • Европа: Германия, Великобритания, Испания, Франция, Италия, Россия и остальная Европа
  • Азиатско-Тихоокеанский регион: Китай, Индия, Япония, Австралия, Южная Корея, АСЕАН и остальная часть Азиатско-Тихоокеанского региона
  • Ближний Восток: ГКЦ Страны, Израиль и остальной Ближний Восток
  • Африка: Южная Африка, Северная Африка и Центральная Африка
Сегменты охватываются:
  • По технологии: Машинное обучение, обработка естественного языка (NLP), компьютерное зрение и автоматизация роботизированных процессов (RPA)
  • С помощью приложения: Персонализированные рекомендации, управление запасами, чат-боты обслуживания клиентов, обнаружение мошенничества и оптимизация цен
  • Конечный пользователь: Электронная коммерция, магазины Brick-and-Mortar и оптовые торговцы
Компании охвачены:

Adobe, Alibaba Group, Amazon Web Services (AWS), Apple, Appier, Ceconomy, Edeka, Foot Locker, Home Depot, IBM, Kroger, Lemon AI, Lowe’s, Microsoft и NIKE

Драйверы роста:
  • Управление запасами и оптимизация цепочки поставок
  • Обнаружение мошенничества и безопасность
Ограничения и вызовы:
  • Отсутствие стандартизации и функциональной совместимости
  • Проблемы конфиденциальности и безопасности данных

Раскройте макросы и микроэлементы, проверенные по более чем 75 параметрам, Получите мгновенный доступ к отчету

Ключевые разработки

  • В январе 2024 года, LenovoГлобальный технологический лидер запустил свои комплексные розничные решения на основе ИИ, предназначенные для поддержки более умных, безопасных и безопасных решений для розничных торговцев и покупателей любой категории. Эти решения направлены на то, чтобы помочь ритейлерам сократить потери, расширить возможности для бизнеса и повысить качество обслуживания клиентов за счет интеллектуальной трансформации.
  • В январе 2024 года, Salesforce Компания объявила о новых инструментах и инновациях в области данных на основе ИИ, которые преобразуют каждый опыт покупок. Эти инструменты, основанные на платформе Эйнштейна 1, помогают розничным торговцам и маркетологам оптимизировать взаимодействие с клиентами, используя информацию в режиме реального времени о предпочтениях и поведении покупателей. Интегрируя генеративные возможности ИИ в Salesforce Commerce Cloud и Marketing Cloud, компании могут создавать более персонализированный опыт, повышать лояльность клиентов, стимулировать рост доходов и повышать производительность сотрудников.
  • В мае 2023 года Upliance.ai, стартап потребительского оборудования, ориентированный на умную технику, интегрировал ChatGPT в свой флагманский продукт DelishUp, интеллектуальный помощник по приготовлению пищи, предназначенный для упрощения процесса приготовления пищи с помощью автоматизации. Эта инновационная интеграция позволяет пользователям получать персонализированные предложения рецептов и помощь в режиме реального времени во время приготовления пищи. Кроме того, Upliance.ai планирует расширить свою продуктовую линейку в категории бытовой техники, установив сильное присутствие в секторе искусственного интеллекта в розничной торговле.
  • В феврале 2023 года Google, ведущая технологическая компания, известная своими инновационными облачными решениями, в партнерстве с глобальной профессиональной сервисной фирмой Accenture запустила новые инструменты, направленные на то, чтобы помочь розничным торговцам внедрять инновации в свой бизнес и использовать облачные технологии. Это сотрудничество включало интеграцию ai Accenture. Платформа RETAIL с Google Cloud, опираясь на совместные успехи, предоставляет ритейлерам расширенные возможности для модернизации и роста.
  • В январе 2023 года EY (Ernst & Young), мировой лидер в области страхования, консалтинга, стратегии, транзакций и налоговых услуг, запустил решение EY Retail Intelligence, построенное на Microsoft Cloud. Это инновационное решение призвано обеспечить клиентам экономию времени и безопасный опыт покупок, используя Microsoft Cloud для розничной торговли и ее передовые технологии, включая искусственный интеллект (ИИ), аналитику и распознавание изображений, для предоставления ценной информации во всех точках контакта с клиентами.

* Определение: Глобальный искусственный интеллект на розничном рынке относится к использованию технологий искусственного интеллекта в розничной торговле по всему миру. Он включает в себя внедрение решений и услуг на основе ИИ в различных розничных операциях, таких как веб-сайты электронной коммерции, управление цепочками поставок и логистикой, управление взаимоотношениями с клиентами, управление запасами и магазинами. Эти технологии ИИ помогают розничным торговцам повысить операционную эффективность, повысить качество обслуживания клиентов, продвигать персонализированные маркетинговые и товарные рекомендации, обеспечивать прогнозную аналитику, оптимизировать сети цепочки поставок и облегчать управление запасами.

Сегментация рынка

  • By Technology Insights (Выручка, USD Bn, 2019 - 2031)
    • Машинное обучение
    • Обработка естественного языка (NLP)
    • Компьютерное зрение
    • Автоматизация роботизированных процессов (RPA)
  • По данным Application Insights (выручка, USD Bn, 2019 - 2031)
    • Персонализированные рекомендации
    • Управление запасами
    • Чат-боты клиентского сервиса
    • Обнаружение мошенничества
    • Оптимизация цен
  • By End User Insights (Выручка, USD Bn, 2019 - 2031)
    • Электронная торговля
    • Магазины Brick-and-Mortar
    • Оптовики
  • По региональным оценкам (выручка, USD Bn, 2019 - 2031)
    • Северная Америка
      • США.
      • Канада
    • Латинская Америка
      • Бразилия
      • Аргентина
      • Мексика
      • Остальная часть Латинской Америки
    • Европа
      • Германия
      • Великобритания.
      • Испания
      • Франция
      • Италия
      • Россия
    • Остальная Европа
      • Азиатско-Тихоокеанский регион
      • Китай
      • Индия
      • Япония
      • Австралия
      • Южная Корея
      • АСЕАН
      • Остальная часть Азиатско-Тихоокеанского региона
    • Ближний Восток
      • ГКЦ Страны
      • Израиль
      • Остальная часть Ближнего Востока
    • Африка
      • Южная Африка
      • Северная Африка
      • Центральная Африка
  • Ключевые игроки Insights
    • Adobe
    • Alibaba Group
    • Amazon Web Services (AWS)
    • Apple
    • придающий
    • экономика
    • Эдека
    • Фут Локер
    • Home Depot
    • IBM
    • Крогер
    • Лимонный ИИ
    • Лоу
    • Microsoft
    • НИК

Поделиться

Об авторе

Ankur Rai

Анкур Рай — консультант по исследованиям с более чем 5-летним опытом работы с консалтинговыми и синдицированными отчетами в различных секторах. Он управляет проектами по консалтингу и исследованию рынка, сосредоточенными на стратегии выхода на рынок, анализе возможностей, конкурентной среде, оценке и прогнозировании размера рынка. Он также консультирует клиентов по выявлению и использованию абсолютных возможностей для проникновения на неосвоенные рынки.

Не хватает удобства чтения отчетов на местном языке? Найдите нужный вам язык:

Часто задаваемые вопросы

Глобальный искусственный интеллект на розничном рынке оценивается в 10,48 млрд долларов США в 2024 году и, как ожидается, достигнет 73,02 млрд долларов США к 2031 году.

Управление запасами и оптимизация цепочки поставок, обнаружение мошенничества и безопасность являются основными факторами, стимулирующими рост глобального искусственного интеллекта на розничном рынке.

Отсутствие стандартизации и совместимости, а также проблемы конфиденциальности и безопасности данных являются основными факторами, препятствующими росту глобального искусственного интеллекта на розничном рынке.

С точки зрения технологий, сегмент машинного обучения, по оценкам, будет доминировать на рынке в 2024 году.

Adobe, Alibaba Group, Amazon Web Services (AWS), Apple, Appier, Ceconomy, Edeka, Foot Locker, Home Depot, IBM, Kroger, Lemon AI, Lowe’s, Microsoft и NIKE являются основными игроками.

Ожидается, что Северная Америка возглавит мировой рынок искусственного интеллекта.
Logo

Авторитет и сертификация

ESOMAR
DUNS Registered

860519526

Clutch
Credibility and Certification
Credibility and Certification

9001:2015

Credibility and Certification

27001:2022

Выберите тип лицензии

US$ 2,200


US$ 4,500US$ 3,500


US$ 7,000US$ 5,500


US$ 10,000US$ 7,500


Logo

Авторитет и сертификация

ESOMAR
DUNS Registered

860519526

Clutch
Credibility and Certification
Credibility and Certification

9001:2015

Credibility and Certification

27001:2022

СУЩЕСТВУЮЩИЕ КЛИЕНТЫ

Присоединяйтесь к тысячам компаний по всему миру, стремящихся к making the Excellent Business Solutions.

Просмотреть всех наших клиентов
trusted clients logo
© 2024 Coherent Market Insights Pvt Ltd. All Rights Reserved.